
The ATA Commensal Observing System
ATA Memo #89

Peter K. G. Williams (pwilliams@astro.berkeley.edu)

2012 January 25

Abstract

This memo describes the system used to conduct commensal cor-
relator and beamformer observations at the ATA. This system was
deployed for ∼2 years until the ATA hibernation in 2011 and was
responsible for collecting >5 TB of data during thousands of hours
of observations. The general system design is presented (§2) and the
implementation is discussed in detail (§3). I emphasize the rationale
for various design decisions and attempt to document a few aspects of
ATA operations that might not be obvious to non-insiders. I close with
some recommendations (§4) from my experience developing the soft-
ware infrastructure and managing the correlator observations. These
include: reuse existing systems; solve, don’t avoid, tensions between
projects, and share infrastructure; plan to make standalone obser-
vations to complement the commensal ones; and be considerate of
observatory staff when deploying new and unusual observing modes.
The structure of the software codebase is documented (§3, §A, §B).

1 Introduction

One of the major design goals of the Allen Telescope Array (ATA; Welch
et al., 2009) was the ability to share observatory resources to conduct mul-
tiple independent observing programs simultaneously — a feat generally re-
ferred to as commensal observing.1 This memo describes the system used

1In biology, commensalism is a symbiotic arrangement between mutualism and para-
sitism: it is the coexistence of two organisms in which one benefits and the other neither

1

mailto:pwilliams@astro.berkeley.edu


ATA Memo #89 — ATA Commensal System 2

to conduct the largest commensal observing campaigns before the ATA’s
hibernation in 2011. The primary campaign was a joint survey of regions
in the Galactic plane: a traditional radio-astronomical survey looking for
broadband Galactic radio transients (à la Hyman et al., 2005) and a SETI
(Search for Extraterrestrial Intelligence) search for narrowband sources. In
both cases, the Galactic population is clearly best probed by looking in the
plane rather than searching the sky uniformly. Various components of the
traditional search have been referred to as the GCS (Galactic Center Sur-
vey), the AGCTS (ATA Galactic Center Transient Survey), gal90 (Galactic
plane, l = 90◦ region), or the Kepler or Cygnus X-3 surveys. These are now
all grouped together as AGILITE, the ATA Galactic Lightcurve and Tran-
sient Experiment. (The survey description paper is currently in preparation.)
Because of the low overhead to doing so, commensal correlator observations
were also made during the SETI “exoplanets” and “waterhole” surveys, but
there are currently no specific plans to use the correlator data from these
undertakings.

The original vision that motivated the goal of substantial commensal ob-
serving on the ATA was one in which scheduling was based on traditional
radio astronomy applications but SETI searches ran continuously in the back-
ground as well. The traditional observing program would drive the telescope,
controlling the pointing and most hardware systems, and use the ATA’s cor-
relator backends to take data. Meanwhile SETI observations would be per-
formed using the ATA’s beamformer backends more-or-less passively, choos-
ing any promising observation targets lying within whatever field of view
(FOV) was chosen by the traditional observing program. It’s worth noting
that this is not the only commensal observing scheme that might feasibly
be implemented at the ATA. For instance, with a sufficiently large number
of dishes and two relatively undemanding traditional radio astronomical ob-
serving projects, one could partition the array into two subarrays and run
the two projects simultaneously, each using separate antennas and correla-
tors. (One could argue that this is in fact not a commensal mode since so
few resources would be shared between the two projects.)

The earliest commensal observations at the ATA were performed in Au-
gust 2008 by Karto Keating and Tom Kilsdonk, but these and a few other
efforts never became routine observing modes. As such, I refer to the sys-

benefits nor suffers. It derives from the Latin cum mensa, “sharing a table,” originally
alluding to the sharing of food scraps in particular.

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 3

tem under discussion as “the ATA commensal observing system,” without
further qualification. A design for an observatory-wide commensal observing
system, and a deeper discussion of the observatory-wide software systems, is
presented in Gutierrez-Kraybill et al. (2010).

2 Survey and System Design

Observations for the commensal campaigns are scheduled in blocks as per the
standard system in use at the ATA. In contrast to the long-term vision of
ATA commensal observations, it is SETI, not the traditional radio observing
program, that’s “in the driver’s seat” for the observations: SETI software
takes responsibility for all of the telescope hardware, most importantly the
pointing. This arrangement came about because SETI already had a well-
established observing system called Prelude, which had been adapted from its
Arecibo roots to work at the ATA as well. Given this existing codebase, the
project was approached with the plan of minimizing the amount of changes
required to Prelude, while adding a separate “commensal observer” compo-
nent that would take care of everything related to the commensal correlator
campaigns.

With Prelude in charge of pointing the antennas and taking care of SETI’s
data-taking, the responsibilities of the commensal component of the observ-
ing campaigns are extremely constrained: essentially, all it can do, and all it
needs to do, is turn the correlators on and off. One could envision a much
more complex system in which the commensal observer dynamically notifies
Prelude of various needs (“please visit a phase calibrator”), but the system
is vastly simplified if all such decision-making is centralized in Prelude. This
simplification was made possible by pre-negotiating such decisions as point-
ing centers, dwell times, calibrator intervals, and focus settings.

In principle, the commensal observer could be completely ignorant of
Prelude and its workings; by monitoring the current pointing directions of
the ATA dishes, it could decide when a source was being observed and when
the array was slewing, and in the former case it could do the necessary work
to take data. It turns out, however, that “where is the ATA pointing?”
and “are we tracking or slewing?” are questions that are more difficult to
answer than one might think: obtaining ATA antenna telemetry requires
fairly complex code (cf. the implementation of the atastatus command), and
glitches in the data stream make it difficult to interpret the data robustly.

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 4

Prelude knows exactly what its intentions are, however, so it was decided
that the commensal observer would monitor a telemetry stream from Prelude
to obtain pointing information. This stream is described more fully below
(§3.3).

An important thread running through the design of the commensal system
is automation: with thousands of hours of commensal observations scheduled,
it’s desirable to execute them using as little human intervention as possible.
The existing Prelude system fortunately dealt with the difficult task of choos-
ing targets and planning a night’s observing.

3 System Implementation

The ATA commensal observing system is composed of a group of software
tools and practices for using them. As mentioned above, some aspects of the
commensal system were implemented in Prelude and its successor, SonATA
(“SETI on the ATA”). This code is internal to SETI and is not discussed
here.

Although the rest of the commensal software runs on a diverse set of
hosts in a diverse range of situations (e.g., at HCRO during observing; at
UCB during data reduction), the whole codebase is maintained in a single
Git (http://git-scm.com/) repository by the author. This document de-
scribes Git commit 88263be44c3d724e700e46b156e9b1dcfd0b1089, made on
2011 November 17. (Due to the nature of the Git version control system,
this one value identifies an exact snapshot of the commensal source tree
as well as its entire revision history.) A public version of the commensal
repository is currently available at http://astro.berkeley.edu/~pkwill/
repos/commensal.git. This URL will likely go stale as I am (hopefully. . . )
soon leaving Berkeley. A public copy of the repository may be established
at his GitHub account, https://github.com/pkgw/, and at a minimum the
repository will be available upon request. (Once again, thanks to the design
of Git, each repository stands alone and contains every version of every file
as well as the complete revision history of the source tree.)

The vast majority of the source code is written in Python, with some
tools written in shell script. The majority of the latter are Bourne shell
scripts (most likely only compatible with bash), but a few are tcsh scripts,
since the latter was the language used for most ATA observatory infras-
tructure. The repository also contains scheduling and analysis metadata.

http://ral.berkeley.edu/ata/memos/
http://git-scm.com/
http://astro.berkeley.edu/~pkwill/repos/commensal.git
http://astro.berkeley.edu/~pkwill/repos/commensal.git
https://github.com/pkgw/


ATA Memo #89 — ATA Commensal System 5

The Python scripts reference some support modules for controlling the ATA
that are distributed in the mmm2 repository at https://svn.hcro.org/mmm/
pwilliams/pyata/. A few secondary packages use NumPy, miriad-python
(http://purl.oclc.org/net/pkgwpub/miriad-python3) and/or my plot-
ting package, Omegaplot (https://github.com/pkgw/omegaplot/). The
system design is shown in schematic form in Figure 1.

3.1 Scheduling

As mentioned above, commensal observations are allocated blocks in the ATA
schedule as per standard practice.

At the time of the observations, the observatory-wide system for enacting
this schedule was fairly ad hoc. The main HCRO computing environment
is a distributed Unix-type system, with user logins and home directories
shared over the network to a variety of workstations and servers in the signal
processing room (SPR). One user account, obs, has a shared password and by
convention is used to conduct the vast majority of observatory operations.
SETI software systems, however, are segregated from this shared system,
and generally run on separate machines with distinct logins. I’m not familiar
with their configuration.

Correlator observations are scheduled by constructing a large shell script
in the obs account, obs.run, that serially invokes other shell scripts to perform
standard observing tasks. Before the 2011 hibernation, most observatory
time was devoted to correlator observations so this could be considered the
standard ATA scheduling system. For purely SETI observations, the obs.run
script idles for a fixed amount of time while the array is controlled from SETI
computers.

Because the obs.run system proved to be unreliable and the commensal
campaigns involved many identical observations, the commensal observer
was designed to be scheduled and launched separately in a more automatic

2The name derives from our weekly data analysis meeting, “MIRIAD Masterclass with
Melvyn” (Wright).

3Note the unusual host name in this URL. This link is a “Permanent URL”, one that
is intended to be stable over decade timescales and thus (hopefully) more appropriate for
inclusion in the academic literature. This is accomplished merely by forwarding requests
for the PURL to a changeable destination, somewhat like the URL shorteners that are
currently popular. I’m not using PURLs for most of the links in this paper, but this one
in particular already existed because of its publication in Williams & Bower (2010). See
http://purl.org/ for more information.

http://ral.berkeley.edu/ata/memos/
https://svn.hcro.org/mmm/pwilliams/pyata/
https://svn.hcro.org/mmm/pwilliams/pyata/
http://purl.oclc.org/net/pkgwpub/miriad-python
https://github.com/pkgw/omegaplot/
http://purl.org/


ATA Memo #89 — ATA Commensal System 6

Figure 1: Schematic of the commensal observing system. See §3.

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 7

fashion. Commensal observing blocks are entered into a separate schedule
file in the repository (sched/current.tab) using the commands plan-schedsess
or, later, plan-importtxt. The observing processes are launched via cron (see
below).

Meanwhile, the SETI observations are launched via a cron system as well
in the SETI part of the network. This means that there are in effect at least
four relevant versions of the ATA schedule: the textual/graphical version
distributed to users, that schedule as incarnated in obs.run, the schedule used
by the commensal observer, and the schedule used by Prelude. The large
PiGSS (Pi GHz Sky Survey) transient survey also used its own scheduling
system. The suboptimality of this situation should be obvious. Regarding the
particular case of the commensal campaigns, however, things weren’t too bad.
While it was sometimes necessary to coordinate schedule changes with SETI
staff over email, and mistakes could result in lost observing opportunities,
most observations went smoothly. Rarely, miscommunications would result
in obs.run and the commensal launcher attempting to observe simultaneously;
due to poor lockouts in the observatory infrastructure, it’s actually possible
for both systems to operate at the same time, with expectedly poor results.

Each observing session scheduled in the commensal system was assigned
a random 32-bit hexadecimal identifier, e.g. 8592a0ce. This identifier was
used for tracking data and metadata throughout the rest of the observing
and analysis chain. (The original scheme, used in the 2009 GCS survey, used
universally unique identifiers [UUIDs], which are a particular kind of 128-
bit identifier. They are 36 characters long and were judged to be overkill.)
Note that identifying a session by the day on which it occurs, for instance,
is insufficient if there are multiple sessions in one day. In theory, it doesn’t
even work to identify a session by its start time, since the array could be
partitioned into two subarrays with different sessions being executed during
the same block of time.

3.2 Launching and Managing Observations

The main challenges in automatically launching commensal observations are
robustness and control. The loose nature of the ATA online system makes
it possible for the commensal observations to start up with the array in odd
states, and there are inevitably network outages, computer crashes, hardware
problems, etc. Meanwhile, the array schedule isn’t written in stone, and the
operator needs to be able to see what’s going on and potentially alter array

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 8

operations at will.
Commensal correlator observations are launched automatically under the

author’s user account, pkwill. A launcher program, obs-hourly, runs hourly via
cron (see resources/obs.crontab) on the host obscntl and consults the schedule
file in a checkout of the repository found in pkwill’s home directory. If an
observation is upcoming in the next hour, the launcher stays resident and
execs the appropriate observing script at the right time. Because most ob-
servations are scheduled for at least a few hours, the hourly invocation of
the launcher was intended to provide some insurance if the observing script
crashes; this feature has been helpful only a handful of times.

Observations can also be “kickstarted” manually if the automatic invoca-
tion fails. This usually happens when an unusual hardware condition needs
to be resolved before correlator observations can start. This is done with the
obs-kickstart command, which uses GNU screen to launch the observing script
in a detached, persistent virtual terminal. Both launchers have interlocks to
attempt to prevent multiple observations from running simultaneously and to
prevent observations from being launched outside of a scheduled commensal
observing block.

Due to the distributed nature of the HCRO computing environment, ob-
servations can in theory be run from a variety of hosts. This capability was
not usually exploited in ATA operations. Commensal observations were de-
signed to be run from the cron host obscntl (AKA auxcntl) or, in early days,
tumulus.

The obs user can monitor and control commensal observations with the
command commensal-mc, which was set up to be easily accessible to the
obs user and was intended to be straightforward to use. The command can
perform diagnostics such as checking whether a commensal observing ses-
sion is currently active (according to the commensal schedule), whether any
commensal observing processes are currently active, killing or kickstarting
observer processes, etc. Communication between processes and users is ac-
complished with special files in the shared ATA archive disk, /ataarchive,
which is accessible to all HCRO computers and is writeable by most user
accounts (notably, obs and pkwill). Commensal observing processes should
be run as the user pkwill, which presents a difficulty if the user obs is attempt-
ing to kickstart a new process. This is dealt with by doing the kickstarting
through a special passwordless SSH key with a preset command.

A more detailed look at the data coming out of a commensal observa-
tion can be obtained with misc-parseplog, which parses log output from the

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 9

Name Code Description
idle 0 Observing is not active, and the coordinates are unde-

fined
slewing 1 The telescopes are slewing, and the coordinates specify

their destination
pointed 2 The telescopes are pointed up on the specified coordi-

nates

Table 1: Array states enumerated in the synchronization protocol.

commensal observer and does some simple diagnostics on the datasets being
written by the data catchers. This program has proven to be quite helpful
for checking target selection and catching occasional correlator failures which
were both serious and undetected by the usual diagnostics.

3.3 Synchronization Protocol

As alluded to above, the commensal observing software monitors a teleme-
try stream from Prelude. This stream was designed to convey the minimal
amount of information necessary for the commensal observer to easily drive
the correlators. The stream is broken into messages, each of which transmits
a timestamp, an array state, and observing coordinates. The states are listed
in Table 1.

This architecture lends itself to a state-machine implementation in the
commensal observer. The lack of state in the telemetry stream means that
the observer and/or Prelude can die at arbitrary times and the observer will
recover sensibly.

The telemetry stream is implemented with broadcast UDP packets on
port 24243. (This port was chosen arbitrarily.) Each packet consists of 32
bytes: a 64-bit double-precision floating point Unix timestamp, a 32-bit un-
signed integer state code, an unused 32-bit padding field, a double-precision
right ascension coordinate measured in hours, and a double-precision decli-
nation coordinate measured in degrees. The values are big-endian and can
be decoded with the Python struct.unpack specifier >dIIdd. The numerical
codes corresponding to the states are also listed in Table 1. The specified
transmission rate is one packet per second, though there’s nothing special
setting this rate. Protocol decoding is implemented in pylib/protocol.py.

Clearly, it is not difficult to implement this protocol. The program obs-

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 10

listener.py can monitor the telemetry stream and print out low-level packet
contents and check for unexpected state transitions. For example, it was used
to diagnose a situation in which two Prelude processes were simultaneously
running, one broadcasting a series of idle packets, the other attempting to
run observations. The apparent oscillation between the idle and active states
unsurprisingly confused the observer.

The program obs-master.py can be used to perform commensal-style ob-
servations when Prelude is inactive. Like Prelude, it performs target se-
lection, drives the telescopes, and emits telemetry packets. Thanks to the
clear division of responsibilities and the simplicity of the commensal observ-
ing protocol, the commensal observer can operate completely normally even
though the software “in the driver’s seat” is completely different. This was
also the experience when Prelude was replaced with SonATA, SETI’s next-
generation observing system. Besides a change in the active port number
(to allow simultaneous testing of Prelude and SonATA), the replacement of
several racks of computer equipment and the entire software codebase was
completely transparent to the commensal observer.

Compared to most elements of the commensal software package, the obs-
master.py program is relatively complicated. It can either loop through a
list of targets in order, with calibrator scans interspersed, or it can always
observe the lowest-declination visible source. A few other parameters, such
as the antenna focus position and interval between calibrator scans, are also
configurable. It was not used extensively so its target-selection algorithms
are relatively unsophisticated.

The current code to monitor broadcast UDP packets doesn’t work in the
case that the emitter and listener are on the same host, which corresponds
to situations when obs-master.py is being used. I suspect that this could
be fixed with a better understanding of the proper low-level socket setup,
but since this problem arises during manually-arranged observations, during
those times I just tweak the socket code to skip actual network communica-
tion (by using the loopback device). This “solution” did lead to problems
once or twice when I forgot to undo the tweak once observations were over.

3.4 Correlator Observer

The commensal correlator observer, obs-slave.py, is the most complex element
of the commensal observing system. It is a single program that is launched
by the hourly cronjob, monitors the telemetry stream, and operates the ATA

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 11

correlators to take data for transient searches.
On a low level, the commensal observer is responsible for driving a specific

set of subsystems:

• the ATA correlators

• the attemplifiers used by those correlators

• the local oscillators (LOs) used by those correlators

• the fringe-rotator iBOBs

The observer must take appropriate action based on state transitions in the
telemetry stream or other external inputs (e.g., abort commands).

The observer must also pay attention to some secondary systems to sup-
port its observations:

• It must have access to a catalog (mapping from coordinates to source
names) so that correct target names can be shown to the operator and
embedded in output datasets.

• It must generate ATA “ephemeris files” to be used by the fringe rotators
and correlator data-catchers.

• It must check for abort signals, which is accomplished by monitoring
the /ataarchive filesystem for the appearance of special files.

• It must generate detailed logs, since one wants to be able to debug
subtle problems, check that hardware is being driven correctly, search
for efficiency losses, and monitor the array.

• It must save appropriate state so that if it crashes and is restarted, the
array hardware is reset or not reset so that datasets from before and
after the crash may be calibrated consistently.

In order to accomplish all this, the observer is a multithreaded program
with a main coordinator thread and various subthreads responsible for the
subsystems. Because it is important that the observer be resilient to crashes,
there’s also complex code to deal with Python exceptions as robustly as
possibly. The final program is still less than 700 SLOC (statement lines of
code), a nice demonstration of the concision of Python. Looking at the source
will confirm, however, that the code is quite dense.

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 12

The commensal observer stores each individual scan in a separate MIRIAD
dataset simply named with a serial number. This approach makes a directory
listing relatively opaque, but was hoped to be more robust than the standard
ATA practice of naming datasets with some combination of source name, ob-
serving frequency, etc., and appending to these datasets when multiple scans
occur. Most MIRIAD tasks can stream through multiple datasets, but none
can truly analyze only a portion of a dataset, so it should be more efficient
to create many datasets and sometimes deal with them in bulk, rather than
to create large datasets and sometimes subdivide them. There have also
been instances where a large dataset has been rendered invalid due to some
problem at the very end of an observation, and subdividing datasets helps
minimize the damage incurred in these cases.

The datasets generated by the commensal observer are augmented with
a few extra data items. A file within the dataset named c instr records the
identifier of the ATA correlator used to generate the data; there is perhaps
an oversight in the ATA data catcher software that this information is not
recorded in datasets otherwise. (This information is useful because failures
in the digital electronics have correlator-specific effects.) Another file named
c tstop records the timestamp at which Prelude reported leaving the current
pointing for another target — there will be a delay between Prelude issuing
the slew command and the correlator data catchers shutting down and closing
their datasets, so there may be some bad data at the end of a scan taken
while the antennas are slewing.

One particular challenge faced by the commensal observer is that the
standard ATA data catcher program, atafx, was designed to be run with
a predefined integration time. By the nature of the commensal observing
system, however, the commensal observer does not know how long each in-
tegration will last. (If the expected integration time were transmitted from
Prelude to the observer, one would still have to check that it was honored,
and dealing with unexpected circumstances would require all of the flexibility
needed by the current implementation.) Given the current software, the best
solution is actually to SSH to strato, the data-taking host, and kill the atafx
processes. A project was started to change the data takers to be always-
running servers so that integration could be stopped and started quickly and
on-demand, but that code never reached deployment.

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 13

3.5 Observation Database

The commensal observing system includes not only software for making ob-
servations but also a set of tools for understanding the observations that
have been made. These are built on a database of observing sessions and
individual scans.

These post-observation tools could plausibly have been separated into a
different software package, and that might arguably have been a better design
decision. Different observing programs may have different post-observation
analysis needs and thus could benefit from multiple post-observation toolsets.
On the other hand, any post-observation analysis toolset requires some knowl-
edge of available datasets and the context in which they were obtained, so
there’s an advantage to grouping this code with the observing code. It seemed
helpful to not splinter the relevant software into too many pieces, so the two
components were kept together.

That being said, an important aspect of the design of the post-observation
analysis toolkit was a reliance on only the datasets stored in the ATA archive
and no additional metadata. The reasoning was that while one might have
plenty of expectations about the data on disk from the observing plan or
even observing logs, the data on disk are the “ground truth,” and there are
always unexpected ways for the logged metadata and recorded visibilities to
disagree. There were indeed many cases in practice in which the metadata
and the actual datasets disagreed.

For each correlator observing campaign, a table of observing sessions and
individual scans is maintained. The session table is populated from the sched-
ule with the program pdb-stubsess, with new sessions marked as “unscanned”.
After being observed, each session is eventually scanned with pdb-scansess
and marked as “scanned”. The pdb-scansess program creates entries for each
scan in the session and in fact reads all of the visibility files completely to
search for any potential problems in the data. It also records useful per-scan
metadata, the fields of which are listed in Table 2. Of particular note are the
lst0 field, which allows quick analysis of the hour-angle coverage of observa-
tions of a source, and the failtype field, which records any issues that make
the scan unusable. To paraphrase Anna Karenina, “Successful observations
are all alike; every unsuccessful observation is unsuccessful in its own way.”
Thus there’s one value of failtype, zero, which indicates success, but a vari-
ety of nonzero values indicate possible failure modes, as in the familiar errno
values returned in Unix error codes.

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 14

Name Type Units Description
uid string UID of the scan’s session
fncode int identifies the scan filename within the ses-

sion data directory via reference to a sep-
arate table

ccode int identifies the equatorial coordinates of the
scan pointing via reference to a separate
table

freq int MHz the observing frequency of the scan
focus int MHz the predominant focus setting of the an-

tennas during the scan
tst int seconds the start time of the scan (as a Unix time-

since-Epoch)
dur int seconds the duration of the scan
lst0 float hours the LST at the beginning of the scan
failtype int failure flag if scan is unusable for some rea-

son

Table 2: Metadata recorded in the scan database.

The observation databases are recorded in flat, line-oriented text files us-
ing a simple database layer implemented in pylib/flatdb.py. While it’s proba-
bly foolish to implement one’s own database layer, the flatdb system is simple,
fairly efficient, and was not a major sink of programmer time. The motiva-
tion for creating it was to take advantage of the fact that the Git repository
would effectively provide change tracking and data backup. While a few ex-
isting text-based Python database modules were found, they were generally
not well-engineered.

Additional utilities were created to populate the observation databases
more fully as certain new needs came to light. For instance, pdb-filldatasizes
computes and records the total data size of each session, to allow reporting of
the total survey data volume. pdb-fillfocus determines and inserts focus set-
ting information because the importance of this information was not initially
obvious.

Several schedule blocks were used to observe AGILITE sources outside of
the commensal observing system. Several tools were written to retroactively
populate the database with information from these sessions so that all of
the relevant information would be centralized. Not all sessions run outside

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 15

of the commensal system map onto the schema of the observation database,
but many do. The program misc-scantree performs a similar task to pdb-
scansess, printing out processed scan information, but it does not rely on the
existence of metadata from obs-slave.py. The program pdb-retrosess does the
job of inserting this information into the database. The two can be linked
together in a shell pipeline.

Various other utilities query the databases to analyze, e.g., hour angle
coverage of a source, total observing time, or data quality. The most widely-
used of these tools is qdb-dumpsess, which can summarize the status of an
entire observing campaign or one of its component sessions. The simulta-
neous use of two correlators complicates some queries, since separate scan
records are created for each correlator’s data stream. For instance, if one
näıvely adds up the integration time of a group of scans on a particular
source, the total will be about twice the actual integration time, because two
correlators were active. A different database schema could certainly trade off
this particular issue for other ones.

A final group of tools integrate the information in the observation database
to ARF, the ATA Reduction Framework, the system currently used to an-
alyze the commensal correlator observations. While a discussion of ARF is
outside the scope of this document, I’ll mention that the programs rx-create
and rx-recreate stub out ARF “reduction specifications” and link ARF work
directories with the appropriate raw datasets.

4 Recommendations

I conclude with some recommendations to be kept in mind when designing
and implementing future commensal observing campaigns. These are natu-
rally targeted toward projects similar to the one described here and won’t
apply to every campaign that could be described as “commensal.”

• KISS: Keep It Simple, Stupid. Perhaps the only universal engi-
neering maxim, and it’s as relevant in the commensal context as it
is everywhere else. It’s almost always better to get something small
working and build out. We certainly had many ideas for the campaign
described in this memo that, in retrospect, would have been complete
wastes of time to implement.

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 16

The following group of recommendations is actually more specific large projects
than commensal projects. For a more authoritative perspective, Kleinman
et al. (2008) present some lessons learned from the operations of the Sloan
Digital Sky Survey.

• It’s all about the data. You’ll be able to write new software, but
you won’t be able to take new data, so get the data right. The highest
priority, of course, is getting whatever allows you to accomplish your
science goals. Beyond that, the more uniform your data are, the easier
processing will be — so not only is it important to get the data right,
but it makes life a lot easier to think about these things hard before the
campaign even starts. Large quantities of data are extremely slow to
move around, so production-scale processing needs to require as little
copying as possible.

• Get an end-to-end processing pipeline online as soon as possi-
ble. You don’t want to wait until after half your observing is done
to realize that you need a new kind of calibration observation, or
you’re missing some very useful metadata, or something’s wrong in
the archives. Once a pipeline is in place, you can also start inserting
sanity checks to discover bad data just days, not months, after they
start coming in. Start out by stubbing out as much as possible (cf.
KISS) and fill in the details as you can.

• Define and monitor observing efficiency metrics. You want to
know if you’re on track to reach your science goals, and your obser-
vations will almost surely be less efficient in practice than in theory.
Choose a just few key metrics to avoid information overload. As with
the processing pipeline, the earlier these can be put into regular use,
the better.

• Schedule a time to step back and review. If observations are run-
ning near-continuously, it becomes difficult to take the time to review
how the campaign has progressed and ponder how efficiency might be
improved. After a large project has gotten rolling, it’s probably worth-
while to fall behind on data processing in order to spend a week or so
conducting such a review.

These recommendations are more specific to commensal campaigns:

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 17

• “Electronics before concrete.” This is a slogan promoting cost-
effective design adopted by Swiss railroad planners (Schwager, 2008).
The idea is that it’s much cheaper and faster to retrofit existing systems
(new signaling systems on existing lines, in the Swiss context) than it
is to build new ones from scratch. This is certainly also true when
building the infrastructure to run a commensal campaign: you should
take advantage of existing infrastructure for non-commensal observa-
tions. It only took a few weeks to bolt a small telemetry module onto
the existing SETI Prelude system; meanwhile, it took several years to
get SonATA, the from-scratch Prelude replacement, on the air.

• “Organization before electronics before concrete.” This vari-
ation is used by some German planners (Baumgartner et al., 2011).
Their point is large projects often involve multiple unaffiliated actors
(rail transit agencies) whose turf wars and internal preferences can lead
to plans that are much costlier than what would be arrived at by an
apolitical efficiency-focused team; thus, when planning a project, one
of the most useful things you can do is constructively tackle points of
conflict, even though it’s always tempting to avoid them. In a commen-
sal campaign, of course, there are also multiple actors with diverging
interests. It was possible to design the telemetry system (§3.3) in such
a reliable way only because decisions about observing strategy were
negotiated in person and not left to be implicitly made in software.

• Share as much infrastructure as possible. This is related to the
previous item. In a commensal context, multiple systems doing the
same job will find a way to get out of sync and cause problems. The
scheduling system of this memo is an example of this. It isn’t bad
considered on its own, but its interactions with the SETI and HCRO
systems are problematic. Much time has been spent emailing back
and forth to negotiate and confirm schedule changes. There’s no good
reason for the correlator and beamformer observations to be scheduled
separately. The bad reason for this is that the two sets of observations
are run on separate computer systems and so it is difficult for them to
share information. I have no doubt, however, that some arrangement
could have been arrived at, avoiding not only the tedious emailing but
also making observing more robust thanks to the elimination of an
entire class of potential failures.

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 18

• Make standalone pilot observations, and expect to perform
standalone “patch-up” observations. It will help the campaign
design process if you’ve performed a few test observations without the
commensal infrastructure to check out the mechanics and hopefully
learn about any potential pitfalls. There will almost definitely be some
kind of observation that would be good to get that won’t be made (or
will be botched) during regular operations, so plan to make occasional
standalone observations to cover these gaps. (Don’t forget to propose
for the time to make these observations, if necessary!)

• Be considerate of observatory staff. This should go without say-
ing. In the particular case of commensal campaigns, hacks to the obser-
vatory infrastructure will likely be necessary, and it’s vital that these
occur in a fashion acceptable and comprehensible to the staff who will
have to deal with them.

Finally, these recommendations may be relevant to the software implemen-
tation of a commensal campaign:

• Avoid bidirectional communications. There are many more ways
to implement a one-way communications channel than a two-way chan-
nel. The one-way telemetry stream described in this memo (§3.3)
was straightforward to implement and robust, as demonstrated by the
smooth replacement of Prelude with SonATA and the easy creation
of simple tools such as obs-master.py or obs-listener.py. The success of
the synchronization protocol can be contrasted with that of JSDA, the
messaging system used to interlink the ATA subsystems (Gutierrez-
Kraybill et al., 2010). JSDA uses a two-way “remote procedure call”
model for communications. While it undoubtedly offers important
functionality, the JSDA system is complicated, and obscure lockups
or communications failures have not been uncommon. The heaviness
of the protocol also makes it time-consuming to integrate new software
into the messaging network.

• Use stateless protocols. Software and hardware will inevitably fail,
and testing of your observing systems is likely to be inexhaustive. Using
a stateless architecture makes it so you don’t need to even try to handle
a variety of tricky problems.

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 19

Speaking as the person who drove the commensal correlator system and
who has to reduce all of the data it generated, I feel that it performed well,
and that this was largely due to some good design decisions early on in the
commensal campaign. It’s not likely that much of the particular implemen-
tation will be portable to future facilities, but I hope that some of these
recommendations will be.

Acknowledgments

Special thanks to Peter Backus, Tom Kilsdonk, and Jon Richards for their
work to make the commensal observing campaign happen; as the ones in
charge of moving the dishes, they had a much more difficult job than I did.
Thanks too to Rick Forster, Samantha Blair, Karto Keating, and Colby
Gutiérrez-Kraybill for keeping the array running 24/7, or as close to that as
was humanly possible. Thanks to Geoff Bower for carefully reading drafts of
this piece. Finally, the MMM group was an invaluable resource for discussing
all things observational.

References

Baumgartner, S., Kantke, T., & Dietz, U. S. 2011, Bahnknoten München,
http://www.stadtkreation.de/munich/bahnknoten muenchen.html

Gutierrez-Kraybill, C., Keating, G. K., MacMahon, D., et al. 2010, Proceed-
ings of SPIE, 7740, 77400Z

Hyman, S. D., Lazio, T. J. W., Kassim, N. E., et al. 2005, Nature, 434, 50

Kleinman, S. J., Gunn, J. E., Boroski, B., et al. 2008, Proceedings of SPIE,
7016, 70160B

Schwager, M. 2008, Schweizer Organisation des Bahnnetzes als Vorbild,
http://www.scritti.de/text/bahn2000.html

Welch, J., Backer, D., Blitz, L., et al. 2009, IEEE Proceedings, 97, 1438

Williams, P. K. G., & Bower, G. C. 2010, Astrophys. J., 710, 1462

http://ral.berkeley.edu/ata/memos/
http://www.stadtkreation.de/munich/bahnknoten_muenchen.html
http://dx.doi.org/10.1117/12.857860
http://dx.doi.org/10.1117/12.857860
http://dx.doi.org/10.1038/nature03400
http://dx.doi.org/10.1117/12.789612
http://dx.doi.org/10.1117/12.789612
http://www.scritti.de/text/bahn2000.html
http://dx.doi.org/10.1109/JPROC.2009.2017103
http://dx.doi.org/10.1088/0004-637X/710/2/1462


ATA Memo #89 — ATA Commensal System 20

A Commensal Command Summaries

Name Description
commensal-mc Monitor & control of commensal obs by obs

user
commensal-mc-helper Helper for the above

misc-archdir Print the /ataarchive directory for a session’s
data

misc-crsync Copy session data from strato to cosmic
misc-decodeunixtime Print a Unix time in human-friendly format

misc-diffunixtime Print the difference between two Unix times in
a human-friendly format

misc-dsetnames Print the names of datasets including a par-
ticular source

misc-latestdircmd Print an eval’able command to change to the
directory containing the latest observations

misc-makeunixtime Convert calendar information into a Unix time
misc-parseplog Summarize an ongoing commensal observation

from its pointing logfile
misc-scantree Scan an arbitrary tree of visibility data
misc-sessalias Given a session UID, print its alias

misc-sessuid Given a session alias, print its UID
misc-whatsnear Given coordinates, find the nearest observed

pointings
obs-hourly The hourly observing launcher

obs-kickstart Launch observations right now
obs-launcher Backend program to launch observations

obs-launcher-helper Helper for the above
obs-listener.py Debug the commensal synchronization proto-

col
obs-master.py Drive the array simplistically

obs-slave.py Perform commensal correlator observations
pdb-datealias Set session aliases from their observing dates

pdb-filldatasizes Fill in data size information for sessions miss-
ing it

pdb-fillfocus Fill in focus information for sessions missing it
pdb-filllsts Fill in LST information for sessions missing it

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 21

Name Description
pdb-fillobscfgs Fill in observing frequency/focus configura-

tion information for sessions missing it
pdb-importagcts Import database information from the first-

generation AGCTS database
pdb-importproj Import information from one commensal ob-

serving project (campaign) into another
pdb-retrosess Retroactively import the scans and metadata

for a session
pdb-scansess Import scan information for a given session
pdb-stubsess Stub out session information in the database

from the current schedule
plan-archdir Print out the expected archive directory of a

scheduled observing session
plan-importtxt Import the ATA textual schedule into the com-

mensal schedule
plan-schedsess Manually schedule an observing block

plan-showsched Print the current observing schedule
qdb-dumpsess Print information about an observing cam-

paign or session
qdb-sesssrchacov Show how well each session covers a given

source in a given hour angle range
qdb-srccov Summarize the coverage of a particular source

in a project on a session-by-session basis
qdb-srchacov Show the hour angle coverage of a given source

over the course of the campaign
qdb-summarize Summarize the overall observing statistics of

a campaign
qdb-toscan Print out a list of sessions that probably need

to be scanned
rx-create Create an ARF reduction specification and

workspace for a given session
rx-recreate Re-realize an ARF reduction workspace for a

given session
rx-status Set the reduction status of a session

rx-suggest Suggest a useful session to reduce

http://ral.berkeley.edu/ata/memos/


ATA Memo #89 — ATA Commensal System 22

B Commensal Python Module Summaries

Name Description
catalog Loading and using source catalogs

files Computing paths for accessing file resources
flatdb Simple line-oriented textual database
projdb Session and scan database implementation

protocol Synchronization protocol implementation
sched Loading and using observing schedules

util Miscellaneous utilities

http://ral.berkeley.edu/ata/memos/

	Introduction
	Survey and System Design
	System Implementation
	Scheduling
	Launching and Managing Observations
	Synchronization Protocol
	Correlator Observer
	Observation Database

	Recommendations
	Commensal Command Summaries
	Commensal Python Module Summaries

