Electromagnetic Spectrum
and Multi-wavelength Astronomy
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INITIAL PROBE

Wei: “l| don’t think cameras can photograph
different wavelengths of light. It's just like one of
those Instagram filters that changes colors around
after you take the photo.”

Latoya: “These can’t be real photos. Galaxies
don't produce microwaves, radio waves can only
be heard and not seen, and the Sun is the only
thing that produces UV light.”

Juan: ‘I think they used filters, so that the camera
only recorded certain colors of visible light coming
from the galaxy. When you combine them together,
it makes a photo, just like what you would ordinarily
see with your own eyes.”

Sofia: “l think each image is recording a different wavelength of light coming from
the object. So, the camera must have a sensor that can detect those wavelengths,
and then it shows that as different colors.

Jared: “Each image looks different because of the speed of the waves. For
example, the radio images looks different because that light travels much slower
than visible light, and the infrared light travels the fastest.”

Which student(s) do you agree with the most?
Explain why you agree.
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Science Case Study Focus Questions

* Who completed the study?

* What object was being studied? Why was
that object selected?

* How was the object observed? (E.g., with
what instrument(s)? At what wavelength(s)?)

* Describe one piece of data collected and how
it was used to construct an explanation of the
scientists’ results.

* Why is this result important?



Day 2



D2

Visible Light Spectrum: Review (1)

Light within certain ranges of wavelength, frequency,
and photon energy values can be seen by human eyes
and is useful to us. The visible spectral region starts at
red color and ends at violet color. From red to violet,
the wavelength decreases and energy per photon
(particle of light) increases. The speed of light is
constant across the spectrum.
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Visible Light Spectrum: Review (2)
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Unit Organizer Questions

* What are some properties of visible radiation?
* What are some properties of infrared (IR) radiation?

* What can IR radiation tell us about objects in the
Universe?

 How do we know (what is the evidence to support
the idea) that there is more “light” beyond what our
eyes can see’?

* What are the different ways we can detect and
record IR radiation data?

 What are the different scientific instruments used
with the IRTF, SOFIA, and JWST? How do they collect
information about objects in the Universe?
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1. Can special cameras detect light
that our eyes cannot see/detect?

2. Could the camera see through
this object? (trash bag; plexiglass)

3. Is the object a filter or a blocker /
absorber? (trash bag; plexiglass)
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EM Spectrum: Review (1)

Types of Electromagnetic Radiation

wavelength

radio infrared visible light ultraviolet gamma rays
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broadcast | cooking, radar, heat from able to be the skin, inside of medicine for
radio and telephone and sun, fires, seen used in bodies and killing cancer
television other signals radiators fluorescent objects cells
tubes

© 2013 Encyclopaedia Britannica, Inc.
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EM Spectrum: Review (2)
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EM Spectrum: Review (3)

NASA VIDEOS:

Introduction to the Electromagnetic Spectrum

https://science.nasa.gov/ems/01 intro/

Infrared: More Than Your Eyes Can See
https://www.jpl.nasa.gov/video/details.php?id=180



https://science.nasa.gov/ems/01_intro/

RIGHT PLACE AT THE RIGHT TIME (1)
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Support Resources Regarding
NASA Infrared Observatories

 NASA's Infrared Telescope Facility (operated by the University of Hawai'i):
http://irtfweb.ifa.hawaii.edu/
 NASA'’s IRTF page: https://astrobiology.nasa.gov/missions/nasa-irtf/

« James Webb Space Telescope: https://webbtelescope.org/
« JWST Science: https://webbtelescope.org/webb-science

For historical reference:

NASA'’s SOFIA page: https://www.nasa.gov/mission pages/SOFIA/index.html



http://irtfweb.ifa.hawaii.edu/
https://astrobiology.nasa.gov/missions/nasa-irtf/
https://webbtelescope.org/
https://webbtelescope.org/webb-science
https://www.nasa.gov/mission_pages/SOFIA/index.html

RIGHT PLACE AT THE RIGHT TIME (3)
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CLAIM - EVIDENCE — REASONING: SCIENTIFIC EXPLANATIONS

Statement about the results of an investigation:
* A one-sentence answer to the question you investigated,;
* It answers: What can you conclude?
* It should NOT start with ‘Yes’ or ‘No’.
* It should describe the relationship between dependent and independent
variables.

Evidence must be:

 Sufficient — Use enough evidence to support the claim.

« Appropriate — Use data that support your claim. Leave out information that doesn't
support the claim.

« Qualitative — (using the senses / verbal), or Quantitative (numerical), or a
combination of both.

« Shows how or why the data count as evidence to support the claim.

* Provides the justification for why this evidence is important to this claim.

* Includes one or more scientific principles that are important to the claim and
evidence.

Scientific data used to support the claim tie together the claim and the evidence.

D5 © 2015 Activate Learning
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Probe for explanation and evidence!

e Ask one member to start with describing
one observation, what they claim is in the
Image, providing as much data as they can
find to support their explanation.

e Other members of the group should
question them, probe them for more
explanation, evidence, and examples.

e Switch roles regularly.
e Take notes!
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Challenge Unsupported Statements

1) How do you know that?
2) Where have you seen another example of that?

3) What s it about the color, shape, orientation,
etc. that leads you to say that?

4) Can you support that statement with some
additional evidence or experience?

5) What might be another example of what you
are describing?



Image 2
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Observations & Explanations: In the IR

e You have been practicing your skills of image
Interpretation, and constructing an explanation
based on your current knowledge.

e This becomes even harder to accomplish
when we work outside of the visible spectrum.

e Observe the IR images.

e \What do you notice? What statements can you
support with data or experience?
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Challenge Unsupported Statements

1) How do you know that?
2) Where have you seen another example of that?

3) What s it about the color, shape, orientation,
etc. that leads you to say that?

4) Can you support that statement with some
additional evidence or experience?

5) What might be another example of what you
are describing?



NASA/IPAC
Image 6

Credit: NASA/IPAC/Caltech
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Credit: NASA/SOFIA/USRA/FORCAST Team/James De Buizer



Credit: NASA/DLR/USRA/DSI/FORCAST Team/Lau et al. 2013
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Image 10

D6 Credit: IPAC / Caltech
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Filter Spectral Response Curves

Credit: Gamnline.com
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Sample Student Explanation B
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Hydrogen Absorption Spectrum

Hydrogen Emission Spectrum

400nm

656nm
Transition N=3 to N=2

A hot solid body behind a cooler transparent gas produces an absorption spectrum.

A hot transparent gas with a cool / dark background produces a series of brightly
colored lines that depend on its chemical composition - an emission spectrum
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Mercury vapor




The darker and wider the absorption line, the
lower and wider the dip in brightness. Absorption
= |less light in that particular part of the spectrum.
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RGB Spectrum Generator R.L. McNish
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Spectral Data (1)

Use the data to make statements about the
chemical composition of the Sun.

Solar Absorption Spectrum
KH G F o E D
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wavelength in nm

Hydrogen Absorption Spectrum

¥ wavelength, A (nm)

A cool, transparent gas in front of a hot, opaque body produces an absorption (dark-line) spectrum.
D8
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Spectral Data (2)

Use the following data to make statements about the chemical
composition of each planet. What makes Earth unique?

Intensity
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- Mars mid-IR spectrum taken by the

MARS

- Mariner 9 spacecraft in the 1970s.

- Venus mid-IR spectrum taken by the
- VENUS Venera 15 spacecraft in the 1980s.

Earth mid-IR spectrum taken by the
Nimbus 4 spacecraft in the 1970s.

1 1 1 !  (Materials adapted from Project SPECTRA!:

40 20 10 8 6

€  Wavelength (um) “Goldilocks and the Three Planets.”)



NO spectrum from NIST WebBook

Known spectra of a few atmospheric gases © 2018 U.S. Dept. of Commerce

(be sure to look carefully at the plot wavelength scales!):
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IRTF, SOFIA, and JWST Instruments
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IRTF Instruments: http://irtfweb.ifa.hawaii.edu/instruments/

JWST instruments: https://www.stsci.edu/jwst/instrumentation/instruments



Science Capabilities - Spectroscopy
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Fig. 7. Left: KRS-5 grism installed in its holder. Right: The grism installed in the FLITECAM filter wheel.

FLITECAM grism

(From E. Smith & I. McLean 2008, SPIE 7014, 11)
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Ordinary image of a star field. Grism spectral image of the same star field.

Substitute with IRTF spectroscopy info???
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Student Sample Explanation B
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CCCs (Cross-Cutting Concepts)

— A CCC is a “lens” that a scientist can use to view a
problems, or the approach taken when deciding
how to study an object.

— For example, if a scientist is trying to determine if
something (x) affects (y), then they are using the
CCC of Cause and Effect.

— Or, if a scientist looks at many objects at once to
search for similarities or form groupings, they are
using the CCC of Patterns.

— CCCs are recurring themes in the way scientists
think about & solve problems and investigate
nature.
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Guide to CCCs (1)

Questions that scientists might be asking themselves
if they are viewing their question/problem through
the lens of Patterns:

* |s there a pattern in the data?

* What is the evidence for this pattern?

* Do similarities and differences reveal a pattern?
* |s this pattern real or imagined?

* What predictions can | make based on this pattern?
Can | test them?

* |s there a cause for this pattern?

* How does this pattern compare to other patterns |
have studied?
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Guide to CCCs (2)

Questions that scientists might be asking themselves if they are
viewing their question/problem through the lens of Stability and
Change:

* What causes change in this system?
* What causes stability in this system?

* |s this system experiencing regular intervals of change, followed by
stability?

e Are there feedbacks that make this system more or less stable?
* What is the time scale for this system to remain stable or change?

* How quickly will this system return to being stable after it is
disrupted?

* If the system is stable, what would cause it to change?
* If the system is changing, what would make it become stable?

* How does stability or change in this system compare with other
systems | have studied?
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Final Assignment

1. Plan an astronomy investigation that would yield infrared spectra.
* What astronomical object would like to investigate? Why?
* What telescope and instrument would you use? Why?

2. Explain how scientists know and understand a science research finding
from data collected by a SOFIA instrument using a model; show reasoning in

your response.

Include the following terms/items in your explanation:

— Infrared

— Emit

— Reflect

— Data Optional terms/ labels
_ Telescope * Transmit .

— Instrument HOPRRg okl

T * Your own ideas
— Directional arrows
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IRTF, SOFIA, and JWST Instruments
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IRTF Instruments: http://irtfweb.ifa.hawaii.edu/instruments/

JWST instruments: https://www.stsci.edu/jwst/instrumentation/instruments



Spectral resolution
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Infrared Science for the Astronomical Community
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Wavelength
range

Visual to Near-IR

Visual to Near-IR
Visual to Near-IR
Visual to Mid-IR
Near-IR to Mid-IR

Near-IR to Mid-IR

Near-IR to Mid-IR

Near-IR to Mid-IR

Near-IR to Far-IR

Mid-IR to Far-IR

Mid-IR to Far-IR
Mid-IR to Far-IR

D9 Far-IR

Objects / systems

HIl (ionized hydrogen)
regions
Cool stars: M dwarfs,

red giants, and

red supergiants

Brown dwarfs
Planetary nebulae

Exoplanets

Protostars

Protoplanetary disks

Planetary
surfaces

Asymptotic Giant Branch
(AGB) red giant stars and

carbon stars

Planetary atmospheres

ISM dust

Debris disks
Molecular
cloud cores

© 2023 SETI Institute

IR Discovery Matrix

Prominent spectral features

Atomic and molecular
emission lines

Molecular absorption
lines and bands
Molecular absorption
lines and bands
Atomic and molecular
emission lines
Atomic and molecular absorption
lines during stellar transit
Atomic and molecular
emission lines
Atomic and molecular emission lines
(and absorption lines,
if seen edge-on)

Silicate and ice reflection
absorption bands

Molecular absorption lines & bands;
maser emission lines
Atomic and molecular
emission and absorption lines
Near-IR ice and organic absorption
and emission bands; Mid-IR silicate
bands (usually absorption)
Atomic and molecular
emission and absorption lines
Atomic and molecular
emission lines

Interesting to astronomers
because. ...

Raw material for new stars, excited by
UV emission from nearby young stars

Stellar evolution archetypes;
chemical evolution of the Galaxy

Star and planet formation processes
Late stage of solar-mass stellar evolution;
recycling of chemical elements to the ISM

Composition and temperatures in
exoplanet atmospheres

Longest-lasting stage of star formation

Compositions, chemistry, and gas motions
In forming planetary systems

Composition of planetary surfaces

Late stages of stellar evolution;
recycling of chemical elements to the ISM

Composition and gas motions in
planetary atmospheres

Composition of raw material
for new stars and planets

Nearly-mature planetary system
Earliest star formation processes,
before protostar stage



