Unlocking the Secrets of Nearby Exoplanets with the TESS Mission

Dr. Ricker is the PI of the TESS Mission which will explore nearby stars for exoplanets.

The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In its two-year prime survey mission, TESS will monitor more than 200,000 bright stars in the solar neighborhood for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances.

Crucible of Worlds: A System for Space Synthetic Biology Experiments

Aaron Berliner is the Science PI on a recently funded NASA Ames SIF project to investigate Mars habitability. He will talk about the development of the "extreme conditions" Crucible environmental chamber. The project is a collaboration between NASA Ames Research Center, UC Berkeley, and Autodesk to build a system that will allow for biology experiments under extreme conditions as a step towards space synthetic biology.

How Stars Form

Stars are the atoms of the universe. The process by which stars form is at the nexus of astrophysics since they are believed to be responsible for the re-ionization of the universe, they created the heavy elements, they play a central role in the formation and evolution of galaxies, and their formation naturally leads to the formation of planets. Whereas early work on star formation was based on the assumption that it is a quiescent process, it is now believed that turbulence plays a dominant role.

Robust Emergence of diverse planetary systems

Recent observations indicate that super Earths are common whereas gas giants are relatively rare. Based on the sequential core accretion scenario, Dr. Lin will discuss how various physical effects which may lead to the prolific production of super Earths, independent of the mass and metallicity of their host stars, and the marginal occurrence rate of gas giants and its dependence on the host stars' properties.

How galaxies are influenced by the largest structures in the Universe

When viewed at the largest scales, the distribution of galaxies in the Universe resembles a complex, tangled web: an interconnected network of filaments of galaxies that surround vast, empty voids. Simulations and theory have established that filaments – the largest, most densely populated structures in the Universe - have formed in the billions of years after the Big Bang, and serve as conduits for transporting gas into galaxies, which they then turn into stars.

Geological field trip to Gale crater, Mars: a view from the ChemCam on MSL

Located on Curiosity's mast, the ChemCam instrument ("Chemistry and Camera") uses a laser to provide the elemental composition of geological features along the rover's path. Since 2012, it has contributed to the investigation of geological units that record a time when on Mars, at Gale crater, liquid water was present at the surface. 

The Late Veneer and Earth's habitability

Asteroid impacts were a hazard to any life on the Hadean Earth. A traditional approach to geochemical models of the asteroid impactors uses the concentration of highly siderophile elements including the Pt-group in the silicate Earth. These elements occur in roughly chondritic relative ratios, but with absolute concentrations <1% chondrite. This veneer component implies addition of chondrite-like material with 0.3-0.7% mass of the Earth’s mantle or an equivalent planet-wide thickness of 5-20 km. The veneer thickness, 200-300 m, within the lunar crust and mantle is much less.


Subscribe to RSS - Astrobiology