Cosmic Diary by Lori Fenton

Subscribe to Cosmic Diary by Lori Fenton feed
Part of the Cosmic Diary Network
Updated: 5 hours 50 min ago

Grainfall

November 28, 2016


A Piece of Mars: The dunes climbing over a rocky surface in this 0.96×0.54 km (0.6×0.34 mi) scene are mostly yellow because they’re covered (and therefore kept immobile) by dust. The crest of one dune, though, shows recent activity: dark sand has been pushed by the wind up the lower right side, and then shot (cannonball-style) over the brink, where it slowly piles up on the upper left side. This pileup is called grainfall, because that’s what the sand grains have done here (rather than sliding downhill, avalanche-style, which is called grainflow). There’s a dune on the left side of the image that hasn’t experienced this activity, maybe because it’s a little more sheltered from the wind. (HiRISE ESP_047779_1655, NASA/JPL/Univ. of Arizona)

Bedforms on crater rims

November 21, 2016


A Piece of Mars: Dunes and ripples most commonly form in topographic lows. But not in this 0.96×0.54 km (0.6×0.34 mi) scene. Here, and in other places on Mars, these bedforms (called TARs) form on plains, and sometimes appear to cling to the rims of craters – which are topographic highs, not lows. It’s not clear how this happens: Does the topography of the crater rim provide a wind shadow that allows windblown sediment to accumulate there? Or was there simply more loose material on the crater rims to begin with, allowing these things to form in place? I’m open to suggestions. (HiRISE ESP_047787_1910 NASA/JPL/Univ. of Arizona)

Shadows behind boulders

November 14, 2016


A Piece of Mars: Bright material (either dust or sand) has accumulated in the lee of wagon- to car-sized boulders in this 0.96×0.54 km (0.6×0.34 mi) scene. It’s perhaps something like the Rocknest sand shadow that Curiosity visited a few years back. The wind blows from lower right to upper left, carrying along sediment that occasionally gets trapped in the protected areas behind the boulders. These sand shadows aren’t very thick, as the underlying texture (polygonal terrain!) is visible through them. (HiRISE ESP_047798_1150, NASA/JPL/Univ. of Arizona)

Dunes and rock hurdles in Gale crater (3D)

November 07, 2016


A Piece of Mars: Wind from the upper left is blowing dark dunes toward the lower right in this 1.92×1.08 km (1.19×0.67 mi) anaglyph (if you don’t have your red/blue 3D glasses handy, you can also check out the black and white 2D version). The dunes are crossing through hurdles aligned to make their progress as difficult as possible, but the dunes nevertheless are slowly making their way through. Ironically, the bright “hurdles” are themselves lithified dunes that are perhaps billions of years old. (HiRISE ESP_020555_1755/ESP_047139_1755 NASA/JPL/Univ. of Arizona)

On Mars the wind carves stream channels

October 31, 2016


A Piece of Mars: This 1.6×2 km (1×1.24 mi) scene mostly shows what wind will do to fine-grained, weakly-consolidated surfaces. It has created topography that further strengthens wind scour in the hollows, which even leave kilometers-long grooves reminiscent of water-carved streams. If this were Earth I’d guess they had been carved by water first. But this is Mars, where the wind is in charge. (HiRISE ESP_046504_1785, NASA/JPL/Univ. of Arizona)

The spire in Eberswalde crater

October 10, 2016


A Piece of Mars: OK, you have to bring out the red/blue glasses for this one. (Or click here if you’re missing your glasses and want the black and white version.) Eberswalde crater has some lovely layered deposits, long ago laid down by running water, and since eroded steadily by the wind. The wind leaves behind the most resistant parts (mainly fluvial channels that were more cemented). The center of this image shows a tall spire: the tallest of the flat layers (top of the “wedding cake”) is 290 m (950 ft) across and casts a shadow indicating it’s 200 m (656 ft) above the next layer down. That central spike is another 70 m (230 ft) taller yet, by itself nearly rivaling the “Totem Pole” in Monument Valley. Check out the rest of the red/blue anaglyph, it’s stunning. (HiRISE, ESP_047185_1560/ESP_047119_1560, NASA/JPL/Univ. of Arizona)

Windblown: ancient and recent

October 03, 2016


A Piece of Mars: HiRISE is celebrating 10 years of success by showcasing its first high resolution image, taken back in 2006. Here is a portion of it, shown at 1/4 the full resolution (the scene is 2.5×2.5 km across). I highly recommend downloading the HiRISE image viewer and looking at the whole thing, it’s an amazing landscape. The portion shown here has many different ripple-like features, formed by a wind blowing from left to right. Notice that those in the middle and middle-left are a bit fainter: these are ripple-like features that were carved into the bedrock by the wind, and they may be much older than the sharper-edged ones nearby. (HiRISE TRA_000823_1720, NASA/JPL/Univ. of Arizona)

Is it windblown or not?

September 26, 2016


A Piece of Mars: This 480×270 m (0.30×0.17 mi) scene shows what are being called “ridges”. Were these ridges once dunes that have now been stabilized and eroded? They have some dune-like characteristics: nearly parallel crests, one slope is steeper than the other, that steep slope seems to have exposed layers, and sometimes the crests meet in what is called a “Y-junction” (based on the letter’s shape). But although they’re common in some areas on Mars, they’re not like any dunes or ripples I’m familiar with. I’m inclined to think they’re not ancient dunes, but it’s likely that the wind had a hand in their formation. I’m open to suggestions… (HiRISE, ESP_046998_1365 NASA/JPL/Univ. of Arizona)

Light and dark

September 19, 2016


A Piece of Mars: This 0.96×0.54 km (0.6×0.34 mi) late winter scene is a study in contrast. The dark top half is uniformly rippled. This is the shady surface of the main windward side of one of Mars’ biggest dunes, in Kaiser crater. On the bottom is the sunlit side of the dune, strewn with gullies colored by CO2 frost (white), dark basaltic sand (black), and what may be oxidized fines (orange). (HiRISE ESP_045614_1330, NASA/JPL/Univ. of Arizona)

Shades and textures

September 12, 2016


A Piece of Mars: This 480×270 m (0.3×0.17 mi) scene shows the contact between two very different terrains. On the left is a bright surface with polygonal cracks (characteristic of periglacial terrain – this is at a high latitude). On the right is a dark rippled sand sheet that superposes the polygonally-cracked surface. The long meandering furrows might be the beginnings of polygonal cracking in the sand, which might expand if wind doesn’t erase them. (HiRISE PSP_006473_1125, NASA/JPL/Univ. of Arizona)

Eroded dune

September 05, 2016


A Piece of Mars: Barchan dunes on Mars have a characteristic crescent shape, with a steep slope (“slip face”) on the inside of the sharpest curve (see examples like this, this, these, or this). This image (873×491 m, or 0.54×0.31 mi) shows an example of a dune that probably looked a bit like those other dunes did once, but it’s been highly eroded so that the characteristic curved slip face is no longer the steepest slope. This dune is located pretty far north, so I’m betting it’s been stabilized by ice, so that the wind can no longer easily reshape it into a typical barchan. (HiRISE ESP_036404_2590, NASA/JPL/Univ. of Arizona)

Where does the windblown stuff come from?

August 29, 2016


A Piece of Mars: How far do windblown materials move on Mars? This scene (0.9×1.2 km, 0.56×0.75 mi) shows a bright layer of bedrock (top right) that is eroding, exposing a darker, bluish rock (bottom left). Ripples 5-20 m wide have slowly moved towards the lower right, with some migrating into the darker terrain. Those near the interface show that they’re made of stuff from the brighter terrain, as they are still brighter than the dark, bluish bedrock. But those at the bottom are much more blue. This means that this type of ripple incorporates material from nearby rocks: unlike other kinds of windblown material, they don’t travel far from their source. (HiRISE, ESP_017262_1560, NASA/JPL/Univ. of Arizona)

Erosional remnants

August 22, 2016


A Piece of Mars: The erosionally-streamlined bright areas are on high ground. They are remnants of a vast dusty mantle that once covered this whole area – the rest of it has been blown away. The surrounding regions (check out the whole image) are still covered by that mantle, but here you can see through to the underlying, dark surface made of dark, cratered lava flows. (HiRISE ESP_017914_1685, NASA/JPL/Univ. of Arizona)

Ancient ripples?

August 15, 2016


A Piece of Mars: Potential signs of wind activity are everywhere on Mars. Take this 0.96×0.54 km (0.6×0.34 mi) scene, which is on bedrock dated to be several billion years old. There’s a fabric of ridges trending from the upper right to lower left. The smaller and smoother ones are clearly windblown bedforms. The larger, bright ones are shedding boulders, so if they’re old bedforms then they’ve been lithified. How old are they? Billions of years old? Or did they form sometime in the intervening years? (HiRISE ESP_046389_1695, NASA/JPL/Univ. of Arizona)