Cosmic Diary by Lori Fenton

Subscribe to Cosmic Diary by Lori Fenton feed
Part of the Cosmic Diary Network
Updated: 8 min 46 sec ago

Is it windblown or not?

September 26, 2016


A Piece of Mars: This 480×270 m (0.30×0.17 mi) scene shows what are being called “ridges”. Were these ridges once dunes that have now been stabilized and eroded? They have some dune-like characteristics: nearly parallel crests, one slope is steeper than the other, that steep slope seems to have exposed layers, and sometimes the crests meet in what is called a “Y-junction” (based on the letter’s shape). But although they’re common in some areas on Mars, they’re not like any dunes or ripples I’m familiar with. I’m inclined to think they’re not ancient dunes, but it’s likely that the wind had a hand in their formation. I’m open to suggestions… (HiRISE, ESP_046998_1365 NASA/JPL/Univ. of Arizona)

Light and dark

September 19, 2016


A Piece of Mars: This 0.96×0.54 km (0.6×0.34 mi) late winter scene is a study in contrast. The dark top half is uniformly rippled. This is the shady surface of the main windward side of one of Mars’ biggest dunes, in Kaiser crater. On the bottom is the sunlit side of the dune, strewn with gullies colored by CO2 frost (white), dark basaltic sand (black), and what may be oxidized fines (orange). (HiRISE ESP_045614_1330, NASA/JPL/Univ. of Arizona)

Shades and textures

September 12, 2016


A Piece of Mars: This 480×270 m (0.3×0.17 mi) scene shows the contact between two very different terrains. On the left is a bright surface with polygonal cracks (characteristic of periglacial terrain – this is at a high latitude). On the right is a dark rippled sand sheet that superposes the polygonally-cracked surface. The long meandering furrows might be the beginnings of polygonal cracking in the sand, which might expand if wind doesn’t erase them. (HiRISE PSP_006473_1125, NASA/JPL/Univ. of Arizona)

Eroded dune

September 05, 2016


A Piece of Mars: Barchan dunes on Mars have a characteristic crescent shape, with a steep slope (“slip face”) on the inside of the sharpest curve (see examples like this, this, these, or this). This image (873×491 m, or 0.54×0.31 mi) shows an example of a dune that probably looked a bit like those other dunes did once, but it’s been highly eroded so that the characteristic curved slip face is no longer the steepest slope. This dune is located pretty far north, so I’m betting it’s been stabilized by ice, so that the wind can no longer easily reshape it into a typical barchan. (HiRISE ESP_036404_2590, NASA/JPL/Univ. of Arizona)

Where does the windblown stuff come from?

August 29, 2016


A Piece of Mars: How far do windblown materials move on Mars? This scene (0.9×1.2 km, 0.56×0.75 mi) shows a bright layer of bedrock (top right) that is eroding, exposing a darker, bluish rock (bottom left). Ripples 5-20 m wide have slowly moved towards the lower right, with some migrating into the darker terrain. Those near the interface show that they’re made of stuff from the brighter terrain, as they are still brighter than the dark, bluish bedrock. But those at the bottom are much more blue. This means that this type of ripple incorporates material from nearby rocks: unlike other kinds of windblown material, they don’t travel far from their source. (HiRISE, ESP_017262_1560, NASA/JPL/Univ. of Arizona)

Erosional remnants

August 22, 2016


A Piece of Mars: The erosionally-streamlined bright areas are on high ground. They are remnants of a vast dusty mantle that once covered this whole area – the rest of it has been blown away. The surrounding regions (check out the whole image) are still covered by that mantle, but here you can see through to the underlying, dark surface made of dark, cratered lava flows. (HiRISE ESP_017914_1685, NASA/JPL/Univ. of Arizona)

Ancient ripples?

August 15, 2016


A Piece of Mars: Potential signs of wind activity are everywhere on Mars. Take this 0.96×0.54 km (0.6×0.34 mi) scene, which is on bedrock dated to be several billion years old. There’s a fabric of ridges trending from the upper right to lower left. The smaller and smoother ones are clearly windblown bedforms. The larger, bright ones are shedding boulders, so if they’re old bedforms then they’ve been lithified. How old are they? Billions of years old? Or did they form sometime in the intervening years? (HiRISE ESP_046389_1695, NASA/JPL/Univ. of Arizona)

Fossil dunes

August 08, 2016


A Piece of Mars: This 1.92×1.08 km (1.19x 0.67 mi) scene shows eroded ridges that are, in fact, lithified dunes. They are so old that you might not recognize them as dunes without more context. This doesn’t happen much on Earth, where inactive dunes are quickly eroded, buried, and/or destroyed by other geologic processes, so enjoy this uniquely martian wonder! (HiRISE ESP_046597_1670, NASA/JPL/Univ. of Arizona)

Dunes not in the global dune database

August 01, 2016


A Piece of Mars: Ten years ago I participated in a global survey of martian dunes. But we missed a few dune fields, like these beauties. They’re small, low, and in rugged terrain, which made them difficult to spot in the lower resolution data set we used. I keep a list of dune fields we’ll have to add if we get a chance to update the database. This scene is 0.96.0.54 km (0.6×0.34 mi) wide. (HiRISE ESP_043582_1555, NASA/JPL/Univ. of Arizona)

When the martian surface is eroded, pretty things emerge

July 25, 2016


A Piece of Mars: Just like at Earth’s Grand Canyon, erosion on Mars has created some really beautiful landscapes. This 480×270 m (0.3×0.17 mi) scene shows rugged terrain that was once buried in sediment. Does the texture here represent the landscape before it was buried, or was it created in the process of scouring off all that overlying sediment? Probably a mixture of both. And we get a pretty view because of it! (HiRISE ESP_046198_1750, NASA/JPL/Univ. of Arizona)

Where we have been

July 18, 2016


A Piece of Mars: This 0.98×0.54 km (0.61×0.34 mi) scene shows ancient windblown bedforms (maybe dunes) that have been partially eroded by the wind. The wind has left behind ghostly stripes: these are remnants of where these things once were, back when they were still actively migrating. Some of the bedforms have been almost entirely erased, except for those remaining bits. Much smaller (2-3 m wavelength) ripples have since formed between some of them, probably made from material scavenged from the larger bedforms. (HiRISE ESP_037700_1710, NASA/JPL/Univ. of Arizona)

Landslides unlike any on Earth

July 05, 2016


A Piece of Mars: Click on this 0.96×0.54 km (0.6×0.33 mi) scene to see it in detail. Many thin, narrow landslides have formed on these dust-coated hills. As far as I’m aware, there’s nothing like this on Earth. Inside the landslide scars, there are small dusty ripples about 1.75 m (~6 ft) in wavelength, smaller than the ripples found on dark sandy dunes. These landslides are visible in images at least as far back as 2007, although they clearly formed after the small crater on the slope (which is slowly being filled with the dusty debris). (HiRISE ESP_045605_1715, NASA/JPL/Univ. of Arizona)

How to hide geology on Mars

June 27, 2016


A Piece of Mars: Three things are trying to hide in this 0.96×0.48 km (0.6×0.3 mi) scene. 1) Craters are slowly being both scoured and buried by migrating sand, 2) the sand itself is hiding in the lee of crater rims and other topographic obstructions to the wind, and 3) small patches of ice (blue in this stretch) are hiding on shady slopes (north is to the right in this southern hemisphere image, taken during southern winter). (HiRISE ESP_045792_1395 NASA/JPL/Univ. of Arizona)

New craters and wind

June 13, 2016


A Piece of Mars: The two small dark craters (2.25-2.4 m, or 7.4-7.8 ft across) are brand new, having appeared in CTX images sometime between May 2007 and April 2008. They punched through a layer of bright dust and threw up some darker material, which the wind carried downwind (near-surface winds blowing from the southwest, and higher winds blowing from the southeast). Application of an atmospheric model could further constrain the season and time of day when the impact happened, based on the prevailing wind direction. This picture from May 2016 shows the wind streaks are still there, having faded only a little in the 8-9 years since they formed. (HiRISE ESP_045798_1965, NASA/JPL/Univ. of Arizona)