Feed aggregator

Grainfall

Cosmic Diary by Lori Fenton - November 28, 2016


A Piece of Mars: The dunes climbing over a rocky surface in this 0.96×0.54 km (0.6×0.34 mi) scene are mostly yellow because they’re covered (and therefore kept immobile) by dust. The crest of one dune, though, shows recent activity: dark sand has been pushed by the wind up the lower right side, and then shot (cannonball-style) over the brink, where it slowly piles up on the upper left side. This pileup is called grainfall, because that’s what the sand grains have done here (rather than sliding downhill, avalanche-style, which is called grainflow). There’s a dune on the left side of the image that hasn’t experienced this activity, maybe because it’s a little more sheltered from the wind. (HiRISE ESP_047779_1655, NASA/JPL/Univ. of Arizona)

Bedforms on crater rims

Cosmic Diary by Lori Fenton - November 21, 2016


A Piece of Mars: Dunes and ripples most commonly form in topographic lows. But not in this 0.96×0.54 km (0.6×0.34 mi) scene. Here, and in other places on Mars, these bedforms (called TARs) form on plains, and sometimes appear to cling to the rims of craters – which are topographic highs, not lows. It’s not clear how this happens: Does the topography of the crater rim provide a wind shadow that allows windblown sediment to accumulate there? Or was there simply more loose material on the crater rims to begin with, allowing these things to form in place? I’m open to suggestions. (HiRISE ESP_047787_1910 NASA/JPL/Univ. of Arizona)

Shadows behind boulders

Cosmic Diary by Lori Fenton - November 14, 2016


A Piece of Mars: Bright material (either dust or sand) has accumulated in the lee of wagon- to car-sized boulders in this 0.96×0.54 km (0.6×0.34 mi) scene. It’s perhaps something like the Rocknest sand shadow that Curiosity visited a few years back. The wind blows from lower right to upper left, carrying along sediment that occasionally gets trapped in the protected areas behind the boulders. These sand shadows aren’t very thick, as the underlying texture (polygonal terrain!) is visible through them. (HiRISE ESP_047798_1150, NASA/JPL/Univ. of Arizona)

Dunes and rock hurdles in Gale crater (3D)

Cosmic Diary by Lori Fenton - November 07, 2016


A Piece of Mars: Wind from the upper left is blowing dark dunes toward the lower right in this 1.92×1.08 km (1.19×0.67 mi) anaglyph (if you don’t have your red/blue 3D glasses handy, you can also check out the black and white 2D version). The dunes are crossing through hurdles aligned to make their progress as difficult as possible, but the dunes nevertheless are slowly making their way through. Ironically, the bright “hurdles” are themselves lithified dunes that are perhaps billions of years old. (HiRISE ESP_020555_1755/ESP_047139_1755 NASA/JPL/Univ. of Arizona)

On Mars the wind carves stream channels

Cosmic Diary by Lori Fenton - October 31, 2016


A Piece of Mars: This 1.6×2 km (1×1.24 mi) scene mostly shows what wind will do to fine-grained, weakly-consolidated surfaces. It has created topography that further strengthens wind scour in the hollows, which even leave kilometers-long grooves reminiscent of water-carved streams. If this were Earth I’d guess they had been carved by water first. But this is Mars, where the wind is in charge. (HiRISE ESP_046504_1785, NASA/JPL/Univ. of Arizona)

The spire in Eberswalde crater

Cosmic Diary by Lori Fenton - October 10, 2016


A Piece of Mars: OK, you have to bring out the red/blue glasses for this one. (Or click here if you’re missing your glasses and want the black and white version.) Eberswalde crater has some lovely layered deposits, long ago laid down by running water, and since eroded steadily by the wind. The wind leaves behind the most resistant parts (mainly fluvial channels that were more cemented). The center of this image shows a tall spire: the tallest of the flat layers (top of the “wedding cake”) is 290 m (950 ft) across and casts a shadow indicating it’s 200 m (656 ft) above the next layer down. That central spike is another 70 m (230 ft) taller yet, by itself nearly rivaling the “Totem Pole” in Monument Valley. Check out the rest of the red/blue anaglyph, it’s stunning. (HiRISE, ESP_047185_1560/ESP_047119_1560, NASA/JPL/Univ. of Arizona)

Windblown: ancient and recent

Cosmic Diary by Lori Fenton - October 03, 2016


A Piece of Mars: HiRISE is celebrating 10 years of success by showcasing its first high resolution image, taken back in 2006. Here is a portion of it, shown at 1/4 the full resolution (the scene is 2.5×2.5 km across). I highly recommend downloading the HiRISE image viewer and looking at the whole thing, it’s an amazing landscape. The portion shown here has many different ripple-like features, formed by a wind blowing from left to right. Notice that those in the middle and middle-left are a bit fainter: these are ripple-like features that were carved into the bedrock by the wind, and they may be much older than the sharper-edged ones nearby. (HiRISE TRA_000823_1720, NASA/JPL/Univ. of Arizona)

Is it windblown or not?

Cosmic Diary by Lori Fenton - September 26, 2016


A Piece of Mars: This 480×270 m (0.30×0.17 mi) scene shows what are being called “ridges”. Were these ridges once dunes that have now been stabilized and eroded? They have some dune-like characteristics: nearly parallel crests, one slope is steeper than the other, that steep slope seems to have exposed layers, and sometimes the crests meet in what is called a “Y-junction” (based on the letter’s shape). But although they’re common in some areas on Mars, they’re not like any dunes or ripples I’m familiar with. I’m inclined to think they’re not ancient dunes, but it’s likely that the wind had a hand in their formation. I’m open to suggestions… (HiRISE, ESP_046998_1365 NASA/JPL/Univ. of Arizona)

Light and dark

Cosmic Diary by Lori Fenton - September 19, 2016


A Piece of Mars: This 0.96×0.54 km (0.6×0.34 mi) late winter scene is a study in contrast. The dark top half is uniformly rippled. This is the shady surface of the main windward side of one of Mars’ biggest dunes, in Kaiser crater. On the bottom is the sunlit side of the dune, strewn with gullies colored by CO2 frost (white), dark basaltic sand (black), and what may be oxidized fines (orange). (HiRISE ESP_045614_1330, NASA/JPL/Univ. of Arizona)

Shades and textures

Cosmic Diary by Lori Fenton - September 12, 2016


A Piece of Mars: This 480×270 m (0.3×0.17 mi) scene shows the contact between two very different terrains. On the left is a bright surface with polygonal cracks (characteristic of periglacial terrain – this is at a high latitude). On the right is a dark rippled sand sheet that superposes the polygonally-cracked surface. The long meandering furrows might be the beginnings of polygonal cracking in the sand, which might expand if wind doesn’t erase them. (HiRISE PSP_006473_1125, NASA/JPL/Univ. of Arizona)

Eroded dune

Cosmic Diary by Lori Fenton - September 05, 2016


A Piece of Mars: Barchan dunes on Mars have a characteristic crescent shape, with a steep slope (“slip face”) on the inside of the sharpest curve (see examples like this, this, these, or this). This image (873×491 m, or 0.54×0.31 mi) shows an example of a dune that probably looked a bit like those other dunes did once, but it’s been highly eroded so that the characteristic curved slip face is no longer the steepest slope. This dune is located pretty far north, so I’m betting it’s been stabilized by ice, so that the wind can no longer easily reshape it into a typical barchan. (HiRISE ESP_036404_2590, NASA/JPL/Univ. of Arizona)

Let’s be careful about this “SETI” signal

Cosmic Diary Marchis - August 29, 2016

Several readers have contacted me recently about reports that a group of international astronomers have detected a strong signal coming from a distant star that could be a sign of a high-technology civilization. Here’s my reaction: it’s interesting, but it’s definitely not the sign of an alien civilization—at least not yet.

Jodie Foster in the movie “Contact”

Here’s why:

  1. The signal was first detected in May 2015 and has not repeated since. Unfortunately, although international protocols call for alerting the astronomical community to the detection of a mysterious signal, the observers chose not to do so. Sadly, their failure to observe this simple protocol likely hindered our ability to clarify exactly what caused the signal.
  2. The signal was detected by an antenna that is very complex—and one that a colleague of mine who is a radio astronomer said could have mislabeled a terrestrial signal (i.e, one from a satellite or airplane) crossing the side lobes of the beam when the observation was made. In other words, the pointing quality of this antenna is so uncertain that it may have captured what we call a false or “parasite” signal.
  3. HD 164595, the host star, is very similar to the sun (same color, size, and age). It’s ninety-one light years from Earth and has a known planet, HD164595 b, which is probably Neptune-like and orbits very close to its star every forty days. We have not yet detected an Earth-like or super-Earth-like planet around this star, and do not believe there is one. This is the case because this is what current theories on the formation of planetary systems tell us. But there is no reason why life could not exist on satellites of as-yet undetected icy giants in this system—but this moves us from fact to the realm of pure speculation.
  4. Finally, before getting too excited about a speculative and relatively old signal, we should recall the puzzle of fast radio bursts, or so called perytons. Astronomers detected and announced them in 2015, only to later conclude that they were nothing more than the signal from a nearby microwave oven which door was opened by impatient astronomers.

So how will I change my mind you may be wondering? Could we prove that this signal is a civilization which has been trying to communicate with us?

Following the mantra by Carl Sagan “Extraordinary claims require exceptional evidence” I will simply say that this signal should be first detected by another antenna somewhere else in the world. My colleagues at the SETI Institute are already working on it, and observed the star for several hours.

Observing the latest star of interest – HD164595 – with the Allen Telescope Array. https://t.co/CvDTwQFaVT #ATASETI pic.twitter.com/9rCZu5Bfzh

— Jon Richards (@jrseti) August 29, 2016

Then the signal should be analyzed to be certain that it is not coming from a human source. Finally, if the signal is detected repetitively, we can assume if E.T. wants to communicate with us, then the signal should have content. Whatever it could be, the digits of Pi, the first prime numbers, their encyclopedia or some images of themselves, we are quickly capable of finding out if this signal has indeed a meaning.

We are not there yet. It has happened in the past and tumultuous history of SETI that, for a few hours, astronomers thought to have discovered a signal (see “Aliens on Line 1”). As the technology evolves, and more searches are being conducted, we may discover more signals that look promising but at the end don’t pan out. But the search continues… in fact, in the scale the age of our solar system, it has just started.

Clear Skies,

Franck Marchis

Where does the windblown stuff come from?

Cosmic Diary by Lori Fenton - August 29, 2016


A Piece of Mars: How far do windblown materials move on Mars? This scene (0.9×1.2 km, 0.56×0.75 mi) shows a bright layer of bedrock (top right) that is eroding, exposing a darker, bluish rock (bottom left). Ripples 5-20 m wide have slowly moved towards the lower right, with some migrating into the darker terrain. Those near the interface show that they’re made of stuff from the brighter terrain, as they are still brighter than the dark, bluish bedrock. But those at the bottom are much more blue. This means that this type of ripple incorporates material from nearby rocks: unlike other kinds of windblown material, they don’t travel far from their source. (HiRISE, ESP_017262_1560, NASA/JPL/Univ. of Arizona)

Proxima Centauri b: Have we just found Earth’s cousin right on our doorstep?

Cosmic Diary Marchis - August 24, 2016

What began as a tantalizing rumor has just become an astonishing fact. Today a group of thirty-one scientists, led by Guillem Anglada-Escude at the Queen Mary University of London, UK, announced the discovery of a terrestrial exoplanet orbiting Proxima Centauri. The discovery of this planet, Proxima Centauri b, is a huge breakthrough not just for astronomers but for all of us. Here’s why.

This artist’s impression shows a view of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The double star Alpha Centauri AB also appears in the image to the upper-right of Proxima itself. Proxima b is a little more massive than the Earth and orbits in the habitable zone around Proxima Centauri, where the temperature is suitable for liquid water to exist on its surface.
Credit: ESO/M. Kornmesser

Astronomers know that exoplanets, or planets in orbit around stars other than our own, are numerous in our galaxy. NASA’s Kepler Space Telescope, which spent four years staring almost continuously at a tiny, distant patch of the sky, proved that there are on average two exoplanets per star in the Milky Way. That’s a lot of worlds! Kepler has also shown that most of our galaxy’s planets are indeed terrestrial—that is, like Earth or even bigger (so-called “super-Earths”). Unfortunately, the exoplanets discovered by Kepler are very distant—too far away for us to observe (and thereby study) using techniques available to most scientists today.

But Kepler is not our only tool for finding exoplanets. We can also use the radial-velocity method, which involves looking for the wobble a planet induces in its host star. This is an effective way to determine the mass of the planet and is not used only for distant stars. In the year 2000, for example, two astronomers announced the discovery of Epsilon Eridani b, a Jupiter-like exoplanet that we now call Aegir, orbiting around Epsilon Eridani, a bright star that’s only 10 light-years away. It was, until today, the closest exoplanet known. Now we now of one that’s far closer.

 

The most popular representation of America. published by Sebastian Münster’s Ptolemy edition of 1540 in Basle (Switzerland)

We also know of 3,374 exoplanets, an enormous large number, given that we discovered the first one only in 1995. Like the cartographers of the seventeenth century, who slowly build a map of our world, astronomers are drawing a map of our galactic neighborhood. We think we have a good handle on the location of nearby stars—that is, ones that are less than 50 light-years away. We know their distance size, temperature, and if they are multiple systems or single stars, for example; but ultimately what we would really like to add to this 3D map of the galaxy are the planets in orbit around these stars.

The Pale Red Dot group was particularly interested in finding planets around Proxima Centauri, the star closest to the Sun. Proxima Centauri is only 4.25 light-years away, so it’s literally in our cosmic backyard. Because of its small mass, it’s too faint to be seen with the naked eye, and was discovered only in 1915. At the end of the 1990s, astronomers tried to detect potential large planets in orbit around this star using the radial-velocity method and came back empty-handed.

In the article published today in Nature, a group of modern astronomers reported on what they learned by using two high-precision radial-velocity instruments: HARPS at the 3.6m telescope of La Silla and UVES at the VLT 8m class telescope, both part of the European Southern Observatory. Several of these observations were done as part of other programs that took place between 2000 and 2016, but from January 2016 to March 2016, the team collected what we call high-cadence data, a fancy way to state that the star was observed once per night to increase its chance of detecting a tiny variation in its motion o (~1 m/s, or the speed of a human walking) that might be caused by the presence of a small planet.

This artist’s impression shows the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The double star Alpha Centauri AB also appears in the image between the planet and Proxima itself. Proxima b is a little more massive than the Earth and orbits in the habitable zone around Proxima Centauri, where the temperature is suitable for liquid water to exist on its surface.
Credit: ESO/M. Kornmesser

This ambitious program has paid off beyond our wildest dreams in that we have now unambiguously detected a planet with a minimum mass 1.3 times that of Earth orbiting the star right in the middle of the goldilocks zone (0.05 AU). I am not a specialist in RV measurement, but this detection seems quite convincing in that it has a false-alarm probability of less than 0.1% and uses a careful comparison of star activity (done by using additional small telescopes during the survey) that are known to mimic the signal of a planet. That is a very significant new data point to add in our cosmic map.

 Did we find a terrestrial planet?

We don’t know for sure. The planet’s MINIMUM mass is 1.3 x Mearth since we don’t really know the orientation of the orbital plane with respect to the observer (RV provides a measurement of m sin i, with i the inclination of the system with respect to us). Assuming random orientations of orbital planes, we have a 90% probability that the true mass is < 2.3x the minimum mass, so 3x Mearth. In short, this could be a super-Earth or something more exotic, like a baby-Neptune.

Have we found a cousin of Earth?

Not yet. We don’t know the composition of the planet—keep in mind that we haven’t seen it but only its effect on its star. Consequently, we don’t have much information on the planet itself, but we do have a constraint on its mass (see above) and its orbit (one year of Proxima Centauri b is 11.2 days). Since the planet does not transit its star, we don’t know yet its size, hence its density.

 Can life exist on this planet?

The planet is at the right place to have a temperature that allows the presence of liquid water on its surface. The question of habitability is however very complex. We need to confirm that this is a terrestrial planet. The best way to do that would be to directly image the planet using the giant telescopes equipped with extreme adaptive optics that are currently being built (i.e., the E-ELT, TMT, GMT). The angular separation between the star and the planet is 39 milli-arcsec, so a telescope as large as 30 m could resolve the system with the right instrument, detecting the planet and possibly giving us insights into its composition.

 Can life thrive on this planet?

This planetary system is different from ours. Proxima Centauri is a M-type star that is known for sporadic flares, or outbursts of energy. Those luminous UV and X-ray flares could have sterilized the surface of the planet regularly and/or ejected a significant part of its atmosphere into space. The authors briefly discussed the possibility of habitability given the possible present of an extreme environment. I am betting that several follow-up papers on this topic will be published very soon. Astrobiology has taught us that life on Earth is resilient and can be found in extreme environments like deep oceans or protected from UV light in underground caves, so the possibility of a life somewhere in Proxima Centauri b cannot be rejected.

Ultimately, this discovery is a significant step on the road to mapping our galaxy. And it has given us a new world to explore, and one that is not too far away. We may not go there any time soon, but it will motivate us (and our funding agencies!) to design and build instruments to image and characterize this planet. What could possibly be more exciting than, in the not-too-distant future, get a picture of a terrestrial planet whose atmosphere we can see and on which we could possibly detect signatures of life? That monumental moment may come in the next decade, and will definitely happen faster now that we know where to point our telescopes.

Let me close by saying that it is astonishing that we were able to detect this small planet after only three months of observations. The Pale Red Dot group is planning similar campaigns for other nearby stars. In the future, for example, we may know if Alpha Centauri A and B, another nearby system composed of two stars almost identical to the sun, host a true cousin of the planet we call home.

We have no way of knowing where this quest will go, or when, or what it will find. But clearly, this could be the most astonishing journey in the history of humanity.

Clear skies,

Franck M.

Erosional remnants

Cosmic Diary by Lori Fenton - August 22, 2016


A Piece of Mars: The erosionally-streamlined bright areas are on high ground. They are remnants of a vast dusty mantle that once covered this whole area – the rest of it has been blown away. The surrounding regions (check out the whole image) are still covered by that mantle, but here you can see through to the underlying, dark surface made of dark, cratered lava flows. (HiRISE ESP_017914_1685, NASA/JPL/Univ. of Arizona)

Ancient ripples?

Cosmic Diary by Lori Fenton - August 15, 2016


A Piece of Mars: Potential signs of wind activity are everywhere on Mars. Take this 0.96×0.54 km (0.6×0.34 mi) scene, which is on bedrock dated to be several billion years old. There’s a fabric of ridges trending from the upper right to lower left. The smaller and smoother ones are clearly windblown bedforms. The larger, bright ones are shedding boulders, so if they’re old bedforms then they’ve been lithified. How old are they? Billions of years old? Or did they form sometime in the intervening years? (HiRISE ESP_046389_1695, NASA/JPL/Univ. of Arizona)

What the Hack

ENCORE  A computer virus that bombards you with pop-up ads is one thing. A computer virus that shuts down a city’s electric grid is another. Welcome to the new generation of cybercrime. Discover what it will take to protect our power, communication and transportation systems as scientists try to stay ahead of hackers in an ever-escalating game of cat and mouse.

The expert who helped decipher the centrifuge-destroying Stuxnet virus tells us what he thinks is next. Also convenience vs. vulnerability as we connect to the Internet of Everything. And, the journalist who wrote that Google was “making us stupid,” says automation is extracting an even higher toll: we’re losing basic skills. Such as how to fly airplanes.

Guests:

•   Ray Sims – Computer Technician, Computer Courage, Berkeley, California

•   Eric Chien – Technical Director of Security Technology and Response, Symantec

•   Paul Jacobs – Chairman and CEO of Qualcomm

•   Shankar Sastry – Dean of the College of Engineering, University of California, Berkeley, director of TRUST

v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} 0 0 1 255 1455 SETI Institute 12 3 1707 14.0 Normal 0 false false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;}

•   Nicholas Carr – Author of The Shallows: What the Internet Is Doing to Our Brains and the forthcoming “The Glass Cage”. His article, “The Great Forgetting,” is in the November 2013 issue of The Atlantic.

 

First released November 11, 2013.

Skeptic Check: Evolutionary Arms Race

ENCORE It’s hard to imagine the twists and turns of evolution that gave rise to Homo Sapiens. After all, it required geologic time, and the existence of many long-gone species that were once close relatives. That may be one reason why – according to a recent poll – one-third of all Americans reject the theory of evolution. They prefer to believe that humans and other living organisms have existed in their current form since the beginning of time.

v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} 0 0 1 348 1985 SETI Institute 16 4 2329 14.0

 

Normal 0 false false false false EN-US JA X-NONE

 

/* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;}

 

But if you’ve ever been sick, you’ve been the victim of evolution on a very observable time scale. Nasty viruses and bacteria take full advantage of evolutionary forces to adapt to new hosts. And they can do it quickly.

Discover how comparing the deadly 1918 flu virus with variants today may help us prevent the next pandemic. Also, while antibiotic resistance is threatening to become a major health crisis, better understanding of how bacteria evolve their defenses against our drugs may help us out.

And the geneticist who sequenced the Neanderthal genome says yes, our hirsute neighbors co-mingled with humans.

It’s Skeptic Check … but don’t take our word for it!

Guests:

•   Svante Pääbo – Evolutionary geneticist, Max Planck Institute for Evolutionary Anthropology, author of Neanderthal Man: In Search of Lost Genomes

•   Ann Reid – – Molecular biologist, executive director of the National Center for Science Education, Oakland, California

•   Martin Blaser – Microbiologist, New York University School of Medicine, member of the National Academy of Sciences, author of Missing Microbes: How the Overuse of Antibiotics Is Fueling Our Modern Plagues

•   Gautam Dantas – Pathologist, immunologist, Center for Genome Sciences and Systems Biology, Washington University, Saint Louis

First released March 31, 2014.

It's All Relative

A century ago, Albert Einstein rewrote our understanding of physics with his Theory of General Relativity. Our intuitive ideas about space, time, mass, and gravity turned out to be wrong.

Find out how this masterwork changed our understanding of how the universe works and why you can thank Einstein whenever you turn on your GPS.

Also, high-profile experiments looking for gravitational waves and for black holes will put the theories of the German genius to the test – will they pass?

And why the story of a box, a Geiger counter, and a zombie cat made Einstein and his friend Erwin Schrödinger uneasy about the quantum physics revolution.

Guests:

•   Jeffrey Bennett – Astronomer, author of What Is Relativity?: An Intuitive Introduction to Einstein’s Ideas, and Why They Matter

•   Beverly Berger – Theoretical physicist and the Secretary for the International Society on General Relativity and Gravitation

•   Hiawatha Bray – Technology reporter, Boston Globe, author of You Are Here: From the Compass to GPS, the History and Future of How We Find Ourselves

v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} 0 0 1 298 1705 SETI Institute 14 3 2000 14.0 Normal 0 false false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;}

•  Paul Halpern – Physicist at the University of the Sciences in Philadelphia, author of Einstein’s Dice and Schrödinger’s Cat: How Two Great Minds Battled Quantum Randomness to Create a Unified Theory of Physics

And To Space We Return

Earth may be the cradle of life, but our bodies are filled with materials cooked up billions of years ago in the scorching centers of stars. As Carl Sagan said, “We are all stardust.” We came from space, and some say it is to space we will return.

Discover an astronomer’s quest to track down remains of these ancient chemical kitchens. Plus, a scientist who says that it’s in our DNA to explore – and not just the nearby worlds of the solar system, but perhaps far beyond.

But would be still be human when we arrive? Hear what biological and cultural changes we might undergo in a multi-generational interstellar voyage.

Guests:

 •   Timothy Beers – Astronomer, University of Notre Dame

•   Chris Impey – Astronomer, University of Arizona, author of Beyond: Our Future in Space

v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} 0 0 1 181 1034 SETI Institute 8 2 1213 14.0 Normal 0 false false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;}

•   Cameron Smith – Archaeologist, Portland State University

Pages


Subscribe to SETI Institute aggregator